
\qquad
\qquad

Falling Objects

\qquad

- When an object falls freely, it accelerates \qquad
- This acceleration is due to gravitational force
- The amount of acceleration, g, varies with height above the surface of the earth
- Although not enough to really notice
- $\sim 9.82 \mathrm{~ms}^{-2}$ (sea level) to $\sim 9.79 \mathrm{~ms}^{-2}$ (Mt. Everest)
- For our purposes, $\boldsymbol{g}=9.81 \mathbf{~ m s}^{-2}$ down

What happens when a ball is thrown straight up in the air?

- On its way up, the ball slows down \qquad
- The acceleration due to gravity is in the opposite direction of the velocity of the ball \qquad
- Ball is going up; gravity is pulling down
- On its way down, the ball speeds up
- The acceleration due to gravity is in the same direction as the velocity of the ball \qquad
- Ball is going down; gravity is pulling down
- That means that the acceleration due to gravity is always down
- We probably already suspected that
- What happens to the ball at the very top of its path? \qquad - It stops
- What is the acceleration at that point?
- It is still the acceleration due to gravity and it is still down
- However, rather than changing the speed of the ball, the gravitational acceleration is causing a change in direction

Air Resistance

\qquad

- All objects in a vacuum fall with the same \qquad rate of acceleration regardless of mass
- We see different rates because of air
\qquad resistance
- The air pushes up on the object slowing it down
- If we remove the effect of air resistance the objects will fall at the same rate

Terminal Velocity

- When an object falls the air is compressed under it and pushes up against the object
- At some point, the force of the air is equal to the force of gravity
- The object will continue to fall but will no longer accelerate
- This maximum velocity is called terminal velocity
- The terminal velocity depends on the surface area and mass of the object and the density of air

